Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 772
Filtrar
1.
Cell Metab ; 36(3): 461-462, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38447528

RESUMO

Cancer metabolism produces large fluxes of lactate and H+, which are extruded by membrane transporters. However, H+ production and extrusion must be coupled by diffusion, facilitated by mobile buffers. Yan et al. propose that carnosine, generated by CARNS2, provides this mobile buffering and enables lysosomal functions that block T cell surveillance.


Assuntos
Carnosina , Carnosina/farmacologia , Linfócitos T , Ácido Láctico , Proteínas de Membrana Transportadoras
2.
J Biochem Mol Toxicol ; 38(2): e23644, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38348714

RESUMO

The nonalcoholic fatty liver disease (NAFLD), which is closely related to westernized dietary (WD) patterns, displays a rising epidemiological and economic burden. Since there is no pharmacological therapy approved for this disease, mechanistic studies are warranted. In this work, we investigated the action of carnosine (CAR), a natural dipeptide with several protection roles against oxidative stress in the liver of NAFLD rats. NAFLD was induced by WD-rich sugars and fat, verifying the histological evidence of steatosis. As intraperitoneal administration of CAR reversed liver steatosis, the protein profiles of NAFLD liver and CAR NAFLD liver were evaluated by label-free proteomics approach. A total of 2531 proteins were identified and the 230 and 276 were significantly up- and downregulated, respectively, by CAR treatment of NAFLD rats and involved in fundamental pathways such as oxidative stress and lipid metabolism. Perilipin 2 and apolipoprotein E, components of the plasma membrane of vesicle, resulted in highly downregulated in the CAR-treated NAFLD liver. The advanced bioanalytical approach demonstrated the efficacy of CAR in overcoming the main symptoms of NAFLD, ameliorating the steatosis in the liver.


Assuntos
Carnosina , Hepatopatia Gordurosa não Alcoólica , Humanos , Ratos , Animais , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Carnosina/farmacologia , Carnosina/uso terapêutico , Dieta Ocidental/efeitos adversos , Proteômica/métodos , Fígado/metabolismo , Modelos Animais , Dieta Hiperlipídica , Metabolismo dos Lipídeos , Modelos Animais de Doenças
3.
J Cell Mol Med ; 28(2): e18061, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38018900

RESUMO

Treatments for organ-confined prostate cancer include external beam radiation therapy, radical prostatectomy, radiotherapy/brachytherapy, cryoablation and high-intensity focused ultrasound. None of these are cancer-specific and are commonly accompanied by side effects, including urinary incontinence and erectile dysfunction. Moreover, subsequent surgical treatments following biochemical recurrence after these interventions are either limited or affected by the scarring present in the surrounding tissue. Carnosine (ß-alanyl-L-histidine) is a histidine-containing naturally occurring dipeptide which has been shown to have an anti-tumorigenic role without any detrimental effect on healthy cells; however, its effect on prostate cancer cells has never been investigated. In this study, we investigated the effect of carnosine on cell proliferation and metabolism in both a primary cultured androgen-resistant human prostate cancer cell line, PC346Flu1 and murine TRAMP-C1 cells. Our results show that carnosine has a significant dose-dependent inhibitory effect in vitro on the proliferation of both human (PC346Flu1) and murine (TRAMP-C1) prostate cancer cells, which was confirmed in 3D-models of the same cells. Carnosine was also shown to decrease adenosine triphosphate content and reactive species which might have been caused in part by the increase in SIRT3 also shown after carnosine treatment. These encouraging results support the need for further human in vivo work to determine the potential use of carnosine, either alone or, most likely, as an adjunct therapy to surgical or other conventional treatments.


Assuntos
Braquiterapia , Carnosina , Disfunção Erétil , Neoplasias da Próstata , Masculino , Humanos , Animais , Camundongos , Carnosina/farmacologia , Carnosina/química , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/cirurgia , Dipeptídeos , Braquiterapia/efeitos adversos , Disfunção Erétil/etiologia
4.
J Food Sci ; 89(1): 710-726, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38146794

RESUMO

The beneficial role of carnosine during in vitro digestion of meat was previously demonstrated, and it was hypothesized that such benefits could also be obtained in a meal system. The current study, therefore, assessed carnosine effects on markers of lipid and protein oxidation and of advanced glycation end products (AGEs) during gastric and duodenal in vitro digestion of a burger meal model. The model included intrinsic (low) and enhanced (medium and high) carnosine levels in a mix of pork mince and bread, with or without ascorbic acid (AA) and/or fructose as anti- and prooxidants, respectively. In the presence of either AA or fructose, a carnosine prooxidative potential during digestion was observed at the medium carnosine level depending on markers and digestive phases. However, free carnosine found at the high carnosine level exerted a protective effect reducing the formation of 4-hydroxynonenal in the gastric phase and glyoxal in both the gastric and duodenal phases. Dual effects of carnosine are likely concentration related, whereby at the medium level, free radical production increases through carnosine's ferric-reducing capacity, but there is insufficient quantity to reduce the resulting oxidation, while at the higher carnosine level some decreases in oxidation are observed. In order to obtain carnosine benefits during meal digestion, these findings demonstrate that consideration must be given to the amount and nature of other anti- and prooxidants present and any potential interactions. PRACTICAL APPLICATION: Carnosine, a natural compound in meat, is a multifunctional and beneficial molecule for health. However, both pro- and antioxidative effects of carnosine were observed during digestion of a model burger meal when ascorbic acid was included at a supplemental level. Therefore, to obtain benefits of dietary carnosine during digestion of a meal, consideration needs to be given to the amount and nature of all anti- and prooxidants present and any potential interactions.


Assuntos
Carnosina , Carnosina/metabolismo , Carnosina/farmacologia , Ácido Ascórbico , Antioxidantes/farmacologia , Digestão , Frutose
5.
Mol Cell Endocrinol ; 582: 112138, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38147954

RESUMO

Consumption of diets high in sugar and fat is related to the development of Metabolic dysfunction-associated steatotic liver disease (MASLD). Carnosine (CAR) is a dipeptide with antioxidant and anti-inflammatory action and has been studied for treating diseases. This work aimed to evaluate the effects of CAR on diet-induced MASLD in rats. Male Wistar rats were distributed into 2 groups (17 weeks): normocaloric (Co, n = 12), and hypercaloric diet rich in lipids and simple carbohydrates (MASLD, n = 12). After, the animals were redistributed to begin the treatment with CAR (4 weeks): Co (n = 6), Co + CAR (n = 6), MASLD (n = 6), and MASLD + CAR (n = 6), administered intraperitoneally (250 mg/kg). Evaluations included nutritional, hormonal and metabolic parameters; hepatic steatosis, inflammatory and oxidative markers. MASLD group had a higher adiposity index, systolic blood pressure, glucose, plasma and liver triglycerides and cholesterol, insulin, hepatic steatosis, oxidative markers, and lower PPAR-α (Peroxisome Proliferator-activated receptor α), compared to the Co. CAR attenuated plasma and hepatic triglyceride and cholesterol levels, hepatic steatosis, CD68+ macrophages, and hepatic oxidative markers, in addition to increasing HDL cholesterol levels and PPAR-α, compared to the untreated MASLD group. CAR acts in importants pathophysiological processes of MASLD and may be a therapeutic compound to control the disease.


Assuntos
Carnosina , Fígado Gorduroso , Doenças Metabólicas , Masculino , Animais , Ratos , Ratos Wistar , Carnosina/farmacologia , Carnosina/uso terapêutico , Receptores Ativados por Proliferador de Peroxissomo , Dieta , Colesterol , Suplementos Nutricionais
6.
BMC Ophthalmol ; 23(1): 502, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38066465

RESUMO

BACKGROUND: To assess oxidative effects induced by a high-calorie diet on the retina of Wistar rats and test the antioxidative effects of carnosine supplementation. METHODS: Wistar rats were randomly divided into the following groups: standard diet (SD), high-calorie diet (HcD), standard diet + carnosine (SD + Car), and high-calorie diet + carnosine (HcD + Car). The body weight, adiposity index, plasma glucose, total lipids, high-density lipoprotein (HDL), low-density lipoprotein (LDL), uric acid, creatinine, and triglycerides of the animals were evaluated. The retinas were analyzed for markers of oxidative stress. Hydrogen peroxide production was assessed by 2',7'-dichlorodihydrofluorescein diacetate (DCF) oxidation. The total glutathione (tGSH), total antioxidant capacity (TAC), protein carbonyl, and sulfhydryl groups of the antioxidant system were analyzed. RESULTS: TAC levels increased in the retinas of the SD + Car group compared to the SD group (p < 0.05) and in the HcD + Car group compared to the HcD group (p < 0.05). The levels of GSH and the GSSH:GSSG ratio were increased in the HcD + Car group compared to the SD + Car group (p < 0.05). An increase in the retinal carbonyl content was observed in the HcD group compared to the SD group (p < 0.05) and in the HcD + Car group compared to the SD + Car group (p < 0.05). A high-calorie diet (HcD) was also associated with a decrease in retinal sulfhydryl-type levels compared to the SD group (p < 0.05). CONCLUSION: The results suggest that feeding a high-calorie diet to rats can promote an increase in carbonyl content and a reduction in sulfhydryl groups in their retinas. The administration of carnosine was not effective in attenuating these oxidative markers. TRIAL REGISTRATION: Animal Ethics Committee of Botucatu Medical School - Certificate number 1292/2019.


Assuntos
Antioxidantes , Carnosina , Ratos , Animais , Antioxidantes/farmacologia , Carnosina/farmacologia , Ratos Wistar , Estresse Oxidativo , Dieta , Suplementos Nutricionais
7.
Nan Fang Yi Ke Da Xue Xue Bao ; 43(11): 1965-1970, 2023 Nov 20.
Artigo em Chinês | MEDLINE | ID: mdl-38081616

RESUMO

OBJECTIVE: To explore the mechanisms mediating the protective effect of carnosine against nephropathy in rats with diabetes mellitus (DM). METHODS: Rat models of DM established by high-fat diet feeding and streptozotocin injection were randomized into DM group and 3 treatment groups with daily carnosine treatment at 100, 300, and 900 mg/kg. Body weight and blood glucose level changes of the rats were measured regularly. After the treatment, 24-h urine, serum samples and kidneys of the rats were collected to measure urine volume, urine protein content, blood creatinine, and kidney mass; renal pathology was observed using HE staining, and MDA content and SOD activity in the kidney tissues were detected. Western blotting was performed to detect the protein expressions of p-AKT, AKT, p-mTOR, mTOR, LC3 and p62 in the kidney tissues. RESULTS: Compared with normal control rats, the diabetic rats exhibited dull and wet hair and showed decreased body weight, increased blood glucose, urinary protein content, 24-h urine volume, blood creatinine, and kidney mass with obvious swelling and deformation of the glomeruli, narrowing of the renal tubules, decreased SOD activity and increased MDA content, lowered p-mTOR/mTOR and p-AKT/AKT ratios and increased LC3 Ⅱ/Ⅰ ratio and p62 protein expression in the kidney tissue. The diabetic rats receiving carnosine treatments had dry hair with normal luster and showed increased body weight and slightly decreased blood glucose, urinary protein content, 24-h urine volume, blood creatinine, and kidney mass. The treatment also improved renal pathology, increased SOD activity, decreased MDA content, increased p-mTOR/mTOR and p-AKT/AKT ratios and lowered LC3 Ⅱ/Ⅰ ratio and p62 protein expression in renal tissue of the diabetic rats. CONCLUSION: Carnosine offers protection against nephropathy in rats with DM possibly by inhibiting oxidative stress, activating the AKT/mTOR pathway, and restoring autophagy in the kidneys.


Assuntos
Carnosina , Diabetes Mellitus Experimental , Nefropatias Diabéticas , Ratos , Animais , Nefropatias Diabéticas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Carnosina/farmacologia , Carnosina/metabolismo , Diabetes Mellitus Experimental/metabolismo , Glicemia/metabolismo , Creatinina , Ratos Sprague-Dawley , Rim , Serina-Treonina Quinases TOR/metabolismo , Peso Corporal , Superóxido Dismutase/metabolismo , Autofagia
8.
Int J Mol Sci ; 24(24)2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38139065

RESUMO

Dinitrosyl iron complexes (DNICs) are important physiological derivatives of nitric oxide. These complexes have a wide range of biological activities, with antioxidant and antiradical ones being of particular interest and importance. We studied the interaction between DNICs associated with the dipeptide L-carnosine or serum albumin and prooxidants under conditions mimicking oxidative stress. The ligands of these DNICs were histidine residues of carnosine or His39 and Cys34 in bovine serum albumin. Carnosine-bound DNICs reduced the level of piperazine free radicals in the reaction system containing tert-butyl hydroperoxide (t-BOOH), bivalent iron ions, a nitroxyl anion donor (Angeli's salt), and HEPES buffer. The ability of carnosine DNICs to intercept organic free radicals produced from t-BOOH decay could lead to this effect. In addition, carnosine DNICs reacted with the superoxide anion radical (O2•-) formed in the xanthine/xanthine oxidase enzymatic system. They also reduced the oxoferryl form of the heme group formed in the reaction of myoglobin with t-BOOH. DNICs associated with serum albumin were found to be rapidly destroyed in a model system containing metmyoglobin and t-BOOH. At the same time, these protein DNICs inhibited the t-BOOH-induced oxidative degradation of coenzymes Q9 and Q10 in rat myocardial homogenate. The possible mechanisms of the antioxidant and antiradical action of the DNICs studied and their role in the metabolism of reactive oxygen and nitrogen species are discussed.


Assuntos
Antioxidantes , Carnosina , Ratos , Animais , Antioxidantes/farmacologia , Histidina , Carnosina/farmacologia , Óxidos de Nitrogênio/química , Ferro/metabolismo , Óxido Nítrico/metabolismo , Radicais Livres , Superóxidos/metabolismo , Oxigênio , Albumina Sérica
9.
Cells ; 12(22)2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37998326

RESUMO

Carnosine is an endogenous dipeptide composed of ß-alanine and L-histidine, possessing a multimodal pharmacodynamic profile that includes anti-inflammatory and anti-oxidant activities. Carnosine has also shown its ability to modulate cell proliferation, cell cycle arrest, apoptosis, and even glycolytic energy metabolism, all processes playing a key role in the context of cancer. Cancer is one of the most dreaded diseases of the 20th and 21st centuries. Among the different types of cancer, breast cancer represents the most common non-skin cancer among women, accounting for an estimated 15% of all cancer-related deaths in women. The main aim of the present review was to provide an overview of studies on the anti-cancer activity of carnosine, and in particular its activity against breast cancer. We also highlighted the possible advantages and limitations involved in the use of this dipeptide. The first part of the review entailed a brief description of carnosine's biological activities and the pathophysiology of cancer, with a focus on breast cancer. The second part of the review described the anti-tumoral activity of carnosine, for which numerous studies have been carried out, especially at the preclinical level, showing promising results. However, only a few studies have investigated the therapeutic potential of this dipeptide for breast cancer prevention or treatment. In this context, carnosine has shown to be able to decrease the size of cancer cells and their viability. It also reduces the levels of vascular endothelial growth factor (VEGF), cyclin D1, NAD+, and ATP, as well as cytochrome c oxidase activity in vitro. When tested in mice with induced breast cancer, carnosine proved to be non-toxic to healthy cells and exhibited chemopreventive activity by reducing tumor growth. Some evidence has also been reported at the clinical level. A randomized phase III prospective placebo-controlled trial showed the ability of Zn-carnosine to prevent dysphagia in breast cancer patients undergoing adjuvant radiotherapy. Despite this evidence, more preclinical and clinical studies are needed to better understand carnosine's anti-tumoral activity, especially in the context of breast cancer.


Assuntos
Neoplasias da Mama , Carnosina , Humanos , Feminino , Camundongos , Animais , Carnosina/farmacologia , Carnosina/uso terapêutico , Dipeptídeos , Neoplasias da Mama/tratamento farmacológico , Estudos Prospectivos , Fator A de Crescimento do Endotélio Vascular , Ensaios Clínicos Controlados Aleatórios como Assunto , Ensaios Clínicos Fase III como Assunto
10.
Int J Mol Sci ; 24(22)2023 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-38003398

RESUMO

Dysregulated metal homeostasis is associated with many pathological conditions, including arthritic diseases. Osteoarthritis and rheumatoid arthritis are the two most prevalent disorders that damage the joints and lead to cartilage and bone destruction. Recent studies show that the levels of zinc (Zn) and copper (Cu) are generally altered in the serum of arthritis patients. Therefore, metal dyshomeostasis may reflect the contribution of these trace elements to the disease's pathogenesis and manifestations, suggesting their potential for prognosis and treatment. Carnosine (Car) also emerged as a biomarker in arthritis and exerts protective and osteogenic effects in arthritic joints. Notably, its zinc(II) complex, polaprezinc, has been recently proposed as a drug-repurposing candidate for bone fracture healing. On these bases, this review article aims to provide an overview of the beneficial roles of Cu and Zn in bone and cartilage health and their potential application in tissue engineering. The effects of Car and polaprezinc in promoting cartilage and bone regeneration are also discussed. We hypothesize that polaprezinc could exchange Zn for Cu, present in the culture media, due to its higher sequestering ability towards Cu. However, future studies should unveil the potential contribution of Cu in the beneficial effects of polaprezinc.


Assuntos
Artrite , Carnosina , Compostos Organometálicos , Humanos , Zinco/farmacologia , Carnosina/farmacologia , Cobre/farmacologia , Compostos Organometálicos/farmacologia , Compostos de Zinco/farmacologia , Proteínas de Ciclo Celular/farmacologia , Cartilagem
11.
Carbohydr Polym ; 321: 121179, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37739486

RESUMO

Diabetic foot ulcers (DFUs) often remain untreated because they are difficult to heal, caused by reduced skin sensitivity and impaired blood vessel formation. In this study, we propose a novel approach to manage DFUs using a multifunctional hydrogel made from a combination of alginate and gum arabic. To enhance the healing properties of the hydrogel, we immobilized nerve growth factor (NGF), within specially designed mesoporous silica nanoparticles (MSN). The MSNs were then incorporated into the hydrogel along with carnosine (Car), which further improves the hydrogel's therapeutic properties. The hydrogel containing the immobilized NGF (SiNGF) could control the sustain release of NGF for >21 days, indicating that the target hydrogel (AG-Car/SiNGF) can serve as a suitable reservoir managing diabetic wound regeneration. In addition, Car was able to effectively reduce inflammation and significantly increase angiogenesis compared to the control group. Based on the histological results obtained from diabetic rats, the target hydrogel (AG-Car/SiNGF) reduced inflammation and improved re-epithelialization, angiogenesis, and collagen deposition. Specific staining also confirmed that AG-Car/SiNGF exhibited improved tissue neovascularization, transforming growth factor-beta (TGFß) expression, and nerve neurofilament. Overall, our research suggests that this newly developed composite system holds promise as a potential treatment for non-healing diabetic wounds.


Assuntos
Acacia , Carnosina , Diabetes Mellitus Experimental , Pé Diabético , Animais , Ratos , Alginatos/farmacologia , Biomimética , Carnosina/farmacologia , Carnosina/uso terapêutico , Diabetes Mellitus Experimental/tratamento farmacológico , Goma Arábica , Hidrogéis/farmacologia , Inflamação , Fator de Crescimento Neural/farmacologia , Fator de Crescimento Neural/uso terapêutico
12.
ACS Appl Bio Mater ; 6(10): 4290-4303, 2023 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-37721636

RESUMO

Multifunctional biohybrid nanofibers (NFs) that can simultaneously drive various cellular activities and confer antibacterial properties are considered desirable in producing advanced wound healing materials. In this study, a bionanohybrid formulation was processed as a NF wound dressing to stimulate the adhesion and proliferation of fibroblast and endothelial cells that play a major role in wound healing. Polyacrylonitrile (PAN) electrospun NFs were hydrolyzed using NaOH and biofunctionalized with l-carnosine (CAR), a dipeptide which could later biosynthesize zinc oxide (ZnO) nanoparticles (NPs) on the NFs surface. The morphological study verified that ZnO NPs are uniformly distributed on the surface of CAR/PAN NFs. Through EDX and XRD analysis, it was validated that the NPs are composed of ZnO and/or ZnO/Zn(OH)2. The presence of CAR and ZnO NPs brought about a superhydrophilicity effect and notably raised the elastic modulus and tensile strength of Zn-CAR/PAN NFs. While CAR ligands were shown to improve the viability of fibroblast (L929) and endothelial (HUVEC) cells, ZnO NPs lowered the positive impact of CAR, most likely due to their repulsive negative surface charge. A scratch assay verified that CAR/PAN NFs and Zn-CAR/PAN NFs aided HUVEC migration more than PAN NFs. Also, an antibacterial assay implied that CAR/PAN NFs and Zn-CAR/PAN NFs are significantly more effective in inhibiting Staphylococcus aureus (S. aureus) than neat PAN NFs are (1000 and 500%, respectively). Taken together, compared to the neat PAN NFs, CAR/PAN NFs with and without the biosynthesized ZnO NPs can support the cellular activities of relevance for wound healing and inactivate bacteria.


Assuntos
Carnosina , Nanofibras , Nanopartículas , Óxido de Zinco , Óxido de Zinco/farmacologia , Óxido de Zinco/química , Carnosina/farmacologia , Nanofibras/química , Staphylococcus aureus , Biomimética , Células Endoteliais , Cicatrização , Nanopartículas/química , Antibacterianos/química
13.
Biochemistry (Mosc) ; 88(8): 1181-1190, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37758316

RESUMO

Using nutritional interventions to cure and manage psychiatric disorders is a promising tool. In this regard, accumulating documents support strong relationships between the diet and brain health throughout the lifespan. Evidence from animal and human studies demonstrated that ß-alanine (Beta-alanine; BA), a natural amino acid, provides several benefits in fight against cognitive decline promoting mental health. This review summarizes and reports state-of-the-art evidence on how BA affects cognitive health and argues existence of potential unrevealed biochemical mechanisms and signaling cascades. There is a growing body of evidence showing that BA supplement has a significant role in mental health mediating increase of the cell carnosine and brain-derived neurotrophic factor (BDNF) content. BDNF is one of the most studied neurotrophins in the mammalian brain, which activates several downstream functional cascades via the tropomyosin-related kinase receptor type B (TrkB). Activation of TrkB induces diverse processes, such as programmed cell death and neuronal viability, dendritic branching growth, dendritic spine formation and stabilization, synaptic development, cognitive-related processes, and synaptic plasticity. Carnosine exerts its main effect via its antioxidant properties. This critical antioxidant also scavenges hypochlorous acid (HOCl), another toxic species produced in mammalian cells. Carnosine regulates transcription of hundreds of genes related to antioxidant mechanisms by increasing expression of the nuclear erythroid 2-related factor 2 (Nrf2) and translocating Nrf2 to the nucleus. Another major protective effect of carnosine on the central nervous system (CNS) is related to its anti-glycating, anti-aggregate activities, anti-inflammatory, metal ion chelator activity, and regulation of pro-inflammatory cytokine secretion. These effects could be associated with the carnosine ability to form complexes with metal ions, particularly with zinc (Zn2+). Thus, it seems that BA via BDNF and carnosine mechanisms may improve brain health and cognitive function over the entire human lifespan.


Assuntos
Carnosina , Animais , Humanos , Carnosina/farmacologia , Carnosina/metabolismo , Antioxidantes , Fator Neurotrófico Derivado do Encéfalo/genética , Fator 2 Relacionado a NF-E2 , Cognição , beta-Alanina , Mamíferos/metabolismo
14.
High Alt Med Biol ; 24(4): 302-311, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37643283

RESUMO

Rathor, Richa, Sukanya Srivastava, and Geetha Suryakumar. A comparative biochemical study between L-carnosine and ß-alanine in amelioration of hypobaric hypoxia-induced skeletal muscle protein loss. High Alt Med Biol. 24:302-311, 2023. Background: Carnosine (CAR; ß-alanyl-L-histidine), a biologically active dipeptide is known for its unique pH-buffering capacity, metal chelating activity, and antioxidant and antiglycation property. ß-Alanine (ALA) is a nonessential amino acid and used to enhance performance and cognitive functions. Hypobaric hypoxia (HH)-induced muscle protein loss is regulated by multifaceted signaling pathways. The present study investigated the beneficial effects of CAR and ALA against HH-associated muscle loss. Methodology: Simulated HH exposure was performed in an animal decompression chamber. Gastric oral administration of CAR (50 mg·kg-1) and ALA (450 mg·kg-1) were given daily for 3 days and at the end of the treatment, hindlimb skeletal muscle tissue was excised for western blot and biochemical assays. Results: Cosupplementation of CAR and ALA alone was able to ameliorate the hypoxia-induced inflammation, oxidative stress (FOXO), ER stress (GRP-78), and atrophic signaling (MuRF-1) in the skeletal muscles. Creatinine phospho kinase activity and apoptosis were also decreased in CAR- and ALA-supplemented rats. However, CAR showed enhanced protection in HH-induced muscle loss as CAR supplementation was able to enhance protein concentration, body weight, and decreased the protein oxidation and ALA administration was not able to restore the same. Conclusions: Hence, the present comprehensive study supports the fact that CAR (50 mg·kg-1) is more beneficial as compared with ALA (450 mg·kg-1) in ameliorating the hypoxia-induced skeletal muscle loss.


Assuntos
Carnosina , Ratos , Animais , Carnosina/farmacologia , Carnosina/metabolismo , Músculo Esquelético/metabolismo , Suplementos Nutricionais , Proteínas Musculares/metabolismo , beta-Alanina/farmacologia , beta-Alanina/metabolismo , Hipóxia/tratamento farmacológico , Hipóxia/metabolismo
15.
Acta Physiol (Oxf) ; 239(1): e14020, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37485756

RESUMO

AIM: Histidine-containing dipeptides (HCDs) are pleiotropic homeostatic molecules with potent antioxidative and carbonyl quenching properties linked to various inflammatory, metabolic, and neurological diseases, as well as exercise performance. However, the distribution and metabolism of HCDs across tissues and species are still unclear. METHODS: Using a sensitive UHPLC-MS/MS approach and an optimized quantification method, we performed a systematic and extensive profiling of HCDs in the mouse, rat, and human body (in n = 26, n = 25, and n = 19 tissues, respectively). RESULTS: Our data show that tissue HCD levels are uniquely produced by carnosine synthase (CARNS1), an enzyme that was preferentially expressed by fast-twitch skeletal muscle fibres and brain oligodendrocytes. Cardiac HCD levels are remarkably low compared to other excitable tissues. Carnosine is unstable in human plasma, but is preferentially transported within red blood cells in humans but not rodents. The low abundant carnosine analogue N-acetylcarnosine is the most stable plasma HCD, and is enriched in human skeletal muscles. Here, N-acetylcarnosine is continuously secreted into the circulation, which is further induced by acute exercise in a myokine-like fashion. CONCLUSION: Collectively, we provide a novel basis to unravel tissue-specific, paracrine, and endocrine roles of HCDs in human health and disease.


Assuntos
Carnosina , Dipeptídeos , Humanos , Ratos , Camundongos , Animais , Dipeptídeos/química , Dipeptídeos/metabolismo , Dipeptídeos/farmacologia , Carnosina/metabolismo , Carnosina/farmacologia , Histidina/química , Histidina/metabolismo , Espectrometria de Massas em Tandem , Antioxidantes
16.
Int J Mol Sci ; 24(12)2023 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-37373157

RESUMO

The lipid profile of skin is fundamental in the maintenance of the protective barrier against the external environment. Signaling and constitutive lipids of this large organ are involved in inflammation, metabolism, aging, and wound healing, such as phospholipids, triglycerides, FFA, and sphingomyelin. Skin exposure to ultraviolet (UV) radiation results in a photoaging process that is an accelerated form of aging. UV-A radiation deeply penetrates the dermis and promotes damage to DNA, lipids, and proteins by increasing the generation of reactive oxygen species (ROS). Carnosine, an endogenous ß-alanyl-L-histidine dipeptide, demonstrated antioxidant properties that prevent photoaging and modification of skin protein profiling, making carnosine a compelling ingredient to consider for use in dermatology. The aim of this research was to investigate the modification of skin lipidome after UV-A treatment in presence or not of topic administration of carnosine. Quantitative analyses based on high-resolution mass spectrometry of nude mice skin-extracted lipids resulted in several modifications of barrier composition after UV-A radiation, with or without carnosine treatment. In total, 328 out of 683 molecules showed significant alteration-262 after UV-A radiation and 126 after UV-A and carnosine treatment versus controls. Importantly, the increased oxidized TGs after UV-A radiation, responsible of dermis photoaging, were completely reverted by carnosine application to prevent the UV-A damage. Network analyses also showed that the production of ROS and the calcium and TNF signaling were modulated by UV-A and carnosine. In conclusion, lipidome analyses attested the carnosine activity to prevent the UV-A damage, reducing the lipid oxidation, the inflammation, and the dysregulation of lipid skin barrier.


Assuntos
Carnosina , Envelhecimento da Pele , Dermatopatias , Animais , Camundongos , Carnosina/farmacologia , Carnosina/química , Camundongos Nus , Espécies Reativas de Oxigênio/metabolismo , Lipidômica , Raios Ultravioleta/efeitos adversos , Fosfolipídeos , Inflamação
17.
J Cachexia Sarcopenia Muscle ; 14(4): 1802-1814, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37199284

RESUMO

BACKGROUND: Muscle wasting during cancer cachexia is mediated by protein degradation via autophagy and ubiquitin-linked proteolysis. These processes are sensitive to changes in intracellular pH ([pH]i ) and reactive oxygen species, which in skeletal muscle are partly regulated by histidyl dipeptides, such as carnosine. These dipeptides, synthesized by the enzyme carnosine synthase (CARNS), remove lipid peroxidation-derived aldehydes, and buffer [pH]i . Nevertheless, their role in muscle wasting has not been studied. METHODS: Histidyl dipeptides in the rectus abdominis (RA) muscle and red blood cells (RBCs) of male and female controls (n = 37), weight stable (WS: n = 35), and weight losing (WL; n = 30) upper gastrointestinal cancer (UGIC) patients, were profiled by LC-MS/MS. Expression of enzymes and amino acid transporters, involved in carnosine homeostasis, was measured by Western blotting and RT-PCR. Skeletal muscle myotubes were treated with Lewis lung carcinoma conditioned medium (LLC CM), and ß-alanine to study the effects of enhancing carnosine production on muscle wasting. RESULTS: Carnosine was the predominant dipeptide present in the RA muscle. In controls, carnosine levels were higher in men (7.87 ± 1.98 nmol/mg tissue) compared with women (4.73 ± 1.26 nmol/mg tissue; P = 0.002). In men, carnosine was significantly reduced in both the WS (5.92 ± 2.04 nmol/mg tissue, P = 0.009) and WL (6.15 ± 1.90 nmol/mg tissue; P = 0.030) UGIC patients, compared with controls. In women, carnosine was decreased in the WL UGIC (3.42 ± 1.33 nmol/mg tissue; P = 0.050), compared with WS UGIC patients (4.58 ± 1.57 nmol/mg tissue), and controls (P = 0.025). Carnosine was significantly reduced in the combined WL UGIC patients (5.12 ± 2.15 nmol/mg tissue) compared with controls (6.21 ± 2.24 nmol/mg tissue; P = 0.045). Carnosine was also significantly reduced in the RBCs of WL UGIC patients (0.32 ± 0.24 pmol/mg protein), compared with controls (0.49 ± 0.31 pmol/mg protein, P = 0.037) and WS UGIC patients (0.51 ± 0.40 pmol/mg protein, P = 0.042). Depletion of carnosine diminished the aldehyde-removing ability in the muscle of WL UGIC patients. Carnosine levels were positively associated with decreases in skeletal muscle index in the WL UGIC patients. CARNS expression was decreased in the muscle of WL UGIC patients and myotubes treated with LLC-CM. Treatment with ß-alanine, a carnosine precursor, enhanced endogenous carnosine production and decreased ubiquitin-linked protein degradation in LLC-CM treated myotubes. CONCLUSIONS: Depletion of carnosine could contribute to muscle wasting in cancer patients by lowering the aldehyde quenching abilities. Synthesis of carnosine by CARNS in myotubes is particularly affected by tumour derived factors and could contribute to carnosine depletion in WL UGIC patients. Increasing carnosine in skeletal muscle may be an effective therapeutic intervention to prevent muscle wasting in cancer patients.


Assuntos
Carcinoma Pulmonar de Lewis , Carnosina , Feminino , Humanos , Masculino , Aldeídos/metabolismo , beta-Alanina/metabolismo , beta-Alanina/farmacologia , Carnosina/metabolismo , Carnosina/farmacologia , Cromatografia Líquida , Dipeptídeos/metabolismo , Dipeptídeos/farmacologia , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Espectrometria de Massas em Tandem , Ubiquitinas/metabolismo
18.
Biochem Biophys Res Commun ; 668: 77-81, 2023 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-37244038

RESUMO

Carnosine and anserine were reported to inhibit tyrosine nitration. However, there are no reports on the nitration inhibitory activities of balenine, 2-oxo-carnosine, 2-oxo-anserine, and 2-oxo-balenine. We demonstrated for the first time that these compounds exhibit inhibitory activities against peroxynitrite-dependent tyrosine nitration. 2-Oxo-imidazole dipeptides (2-oxo-IDPs) showed higher inhibitory activity than their precursor IDPs, thereby suggesting that 2-oxo-IDPs may be effective against nitrative stress-related diseases.


Assuntos
Carnosina , Carnosina/farmacologia , Carnosina/química , Anserina , Ácido Peroxinitroso , Dipeptídeos/farmacologia , Dipeptídeos/química , Imidazóis/farmacologia , Imidazóis/química , Tirosina
19.
Dement Geriatr Cogn Disord ; 52(3): 156-168, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37075707

RESUMO

INTRODUCTION: Carnosine can suppress secondary complications in diabetes and show robust neuroprotective activity against neurodegenerative diseases. Here, we report that carnosine ameliorates diabetes-associated cognitive decline in vivo through the modulation of autophagy. METHODS: A high-fat diet (HFD) and one intraperitoneal injection of 30 mg/kg streptozotocin (STZ) were used to induce type 2 diabetes mellitus in Sprague-Dawley rats. The rats were randomly divided into five groups: control (CON), HFD/STZ, and three intragastric carnosine treatment groups receiving low (100 mg/kg), medium (300 mg/kg), and high (900 mg/kg) doses over 12 weeks. Body weight, blood glucose levels, and cognitive function were continuously monitored. From excised rat hippocampi, we determined superoxide dismutase (SOD) activity and malondialdehyde (MDA) levels; carnosine concentration; protein expressions of Akt, mTOR and the autophagy markers LC3B and P62 and performed histopathological evaluations of the cornu ammonis 1 region. RESULTS: The HFD/STZ group showed increased blood glucose levels and decreased body weight compared to the CON group. However, there were no significant differences in body weight and blood glucose levels between carnosine-treated and -untreated HFD-STZ-induced diabetic rats. Diabetic animals showed obvious learning and memory impairments in the Morris water maze test compared to the CON group. Compared to those in the HFD/STZ group, carnosine increased SOD activity and decreased MDA levels, increased hippocampal carnosine concentration, increased p-Akt and p-mTOR expression, decreased LC3B and P62 expression, alleviated neuronal injuries, and improved cognitive performance in a dose-dependent manner. CONCLUSION: Independent of any hyperglycemic effect, carnosine may improve mild cognitive impairments by mitigating oxidative stress, activating the Akt/mTOR pathway, and modulating autophagy in the hippocampus of type 2 diabetic rats.


Assuntos
Carnosina , Disfunção Cognitiva , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Humanos , Ratos , Animais , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Carnosina/uso terapêutico , Carnosina/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Glicemia , Ratos Sprague-Dawley , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/complicações , Serina-Treonina Quinases TOR/efeitos adversos , Superóxido Dismutase/efeitos adversos , Autofagia , Peso Corporal
20.
Molecules ; 28(8)2023 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-37110558

RESUMO

Age-related macular degeneration (AMD) has been described as a progressive eye disease characterized by irreversible impairment of central vision, and unfortunately, an effective treatment is still not available. It is well-known that amyloid-beta (Aß) peptide is one of the major culprits in causing neurodegeneration in Alzheimer's disease (AD). The extracellular accumulation of this peptide has also been found in drusen which lies under the retinal pigment epithelium (RPE) and represents one of the early signs of AMD pathology. Aß aggregates, especially in the form of oligomers, are able to induce pro-oxidant (oxidative stress) and pro-inflammatory phenomena in RPE cells. ARPE-19 is a spontaneously arising human RPE cell line validated for drug discovery processes in AMD. In the present study, we employed ARPE-19 treated with Aß oligomers, representing an in vitro model of AMD. We used a combination of methods, including ATPlite, quantitative real-time PCR, immunocytochemistry, as well as a fluorescent probe for reactive oxygen species to investigate the molecular alterations induced by Aß oligomers. In particular, we found that Aß exposure decreased the cell viability of ARPE-19 cells which was paralleled by increased inflammation (increased expression of pro-inflammatory mediators) and oxidative stress (increased expression of NADPH oxidase and ROS production) along with the destruction of ZO-1 tight junction protein. Once the damage was clarified, we investigated the therapeutic potential of carnosine, an endogenous dipeptide that is known to be reduced in AMD patients. Our findings demonstrate that carnosine was able to counteract most of the molecular alterations induced by the challenge of ARPE-19 with Aß oligomers. These new findings obtained with ARPE-19 cells challenged with Aß1-42 oligomers, along with the well-demonstrated multimodal mechanism of action of carnosine both in vitro and in vivo, able to prevent and/or counteract the dysfunctions elicited by Aß oligomers, substantiate the neuroprotective potential of this dipeptide in the context of AMD pathology.


Assuntos
Carnosina , Degeneração Macular , Humanos , Carnosina/farmacologia , Carnosina/metabolismo , Retina/metabolismo , Peptídeos beta-Amiloides/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Estresse Oxidativo , Degeneração Macular/metabolismo , Dipeptídeos/farmacologia , Células Epiteliais/metabolismo , Pigmentos da Retina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...